Introduction

Emotional and behavioral disorders (EBD) include a variety of diagnoses, including anxiety, depression, posttraumatic stress disorder (PTSD), oppositional defiant disorder, and conduct disorder (Steiner, Sidhu, Pop, Frenette, & Perrin, 2013). Students with EBD tend to have high rates of problem behaviors and low rates of appropriate behaviors in the classroom (Steiner et al., 2013). These problem behaviors, including aggression, impulsivity, and disruptive behavior, may result in lost instructional time and lead to academic failure. Disruptive behaviors are a concern for most classroom teachers, as they can interfere with learning, interrupt instruction, and make it less likely that students achieve academic goals (Kowalewicz & Coffee, 2014).

The Good Behavior Game (GBG) is an example of an intervention that is used often in a variety of classroom settings and uses team competition and peer influence combined with reinforcement to produce positive outcomes (Barrish et al., 1969; Tingstrom, Sterling-Turner, & Wilczynski, 2006). Embry (2002) believed it was such an effective intervention that he referred to the GBG as a possible behavioral vaccine against future substance abuse and violent behavior. Although research has shown that the GBG is typically implemented in general education settings, the intervention has shown similar positive effects in reducing disruptive behaviors in students with EBD (Salend, Reynolds, & Coyle, 1989).

Bandura and his colleagues (1961) have demonstrated that children learn through social observations of behaviors. Video modeling is a technique that involves the demonstration of the appropriate and desired behavior using a video recording (Bellini & Akullian, 2007). A video modeling intervention typically involves a person watching an example of the expected behavior
and then imitating it in the appropriate setting. Possible models in the videos include, peers, siblings, adults, or the self. In the current study, the models will be both peers and the self.

 Posted rules and verbal descriptions of the expectations has been a traditional method utilized in the GBG for decades and is a component of the intervention that has not been systematically studied or improved upon. Studies have not directly addressed how to explicitly teach the rules of the game, providing examples and non-examples of the target behaviors. A strategy, such as modeling, would demonstrate to students the appropriate behaviors and could possibly lead to further increases in appropriate behaviors in the classroom.

 To date, no study has examined the effects of a class-wide video self-modeling component added to the Good Behavior Game as the antecedent to describe the rules and expected behaviors of the game. As such, the purpose of the current study is to examine the effectiveness of an intervention package with the GBG and class-wide video self-modeling, as well as the effects of class-wide video modeling on its own. The proposed study will examine the following research questions:

 1. To what extent will the Good Behavior Game with randomized contingency components and class-wide video self-modeling increase engagement and decrease off-task behavior in elementary school students with emotional and behavioral disorders?

 2. To what extent will class-wide video self-modeling alone increase engagement and decrease off-task behavior over the Good Behavior Game and class-wide video modeling together?

Methods

The Principal Investigator (PI) and data collectors (i.e. graduate students) will collect data on classwide engagement and off-task behavior during baseline and each intervention sessions.
Engagement will be measured using 30-second momentary time sampling and off-task behavior will be collected using 30-second partial interval recording. Direct observation data will be collected for individual students within the class and then aggregated, resulting in a percentage of students engaged and off-task during the observation. All observers will use a MotivAider-like smartphone application to signal the beginning and end of each interval. Observations will occur each day the intervention is implemented, lasting approximately 30 min each session. The PI will train data collectors on the observation code, adherence checklist, and calculating inter-observer agreement. The PI will also record the class-wide videos in the classroom during baseline.

The study will use a concurrent multiple baseline across classrooms (O’Neill et al., 2011). Baseline data collection will begin on the same day for all three classrooms and the introduction of the intervention phases will be staggered across all three classrooms, with classroom one implementing the GBG + video modeling first, video modeling alone second, then; classrooms two and three will follow the same sequence. Once each class has met the goal for five consecutive days, the intervention will be withdrawn and maintenance data will be collected approximately three weeks later. The results of the study will be analyzed utilizing visual analysis, examining level, trend, and variability. Means, standard deviations, and effect sizes will also be calculated to determine the impact of the intervention on students’ behaviors.
References


